Что такое твердотельное реле
Что такое твердотельное реле?
Реле твердотельное, называемое в англоязычной литературе Solid State Relay, является разновидностью обычного реле электромеханического типа. У него широкий спектр использования в промышленном и бытовом оборудовании. Как и обычное реле, твердотельные устройства легко переносят большие нагрузки с небольшим управляющим сигналом. Основным отличием от обычных реле является то, что такой тип основан полностью на элементах из полупроводников.
Эти особенности устройства детали увеличиваю продолжительность ее эксплуатации. Однако такие реле быстрее и сильнее нагреваются из-за потерь на полупроводниках. В статье приведены все особенности строения, структуры и устройства твердотельного реле, сферы его применения, преимущества и недостатки перед другими видами. По данной теме в статье читателю предложен интересный ролик и полезный файл, подробнее раскрывающий материал.
Что такое твердотельное реле
Полупроводниковые твердотельные реле – ТТР (по терминологии общепромышленного применения) или полупроводниковые коммутаторы (по терминологии для категории качества ВП), силовые полупроводниковые модули, выполненные по гибридной технологии с применением корпусированных компонентов и бескорпусных компонентов (кристаллов).
Помещаемые в металлопластмассовые или металлические корпуса с металлокерамическими (металлостеклянными) изоляторами с монолитной герметизирующей заливкой полимерными компаундами, либо металлостеклянные (металлокерамические) герметичные корпуса:
- твердотельные реле в планарном исполнении;
- твердотельные реле для установки на печатные платы;
- твердотельные реле, устанавливаемые на теплоотвод с объемным монтажом силовых и управляющих цепей.
Твердотельные реле со схемами управления обеспечивающими, в любом сочетании функции управления, защиты и диагностики, с гальванической оптоэлектронной или трансформаторной развязкой, напряжением изоляции от 1 до 4 кВ.
Твердотельные реле для коммутации цепей постоянного, переменного, постоянного тока двунаправленного действия с применением в качестве силового элемента:
- тиристоров (симисторов) в диапазоне 1…200 А, напряжением коммутации 600…1600 В;
- МОП-транзисторов в диапазоне 1…200 А, напряжением коммутации 60…600 В;
- IGBT-транзисторов в диапазоне 1…200 А, напряжением коммутации 600…1200 В;
- Биполярных транзисторов в диапазоне 1…10 А, напряжением коммутации 100…300 В.
Одно и многоканальные, нормально замкнутые или разомкнутые твердотельные реле. Твердотельные реле предназначены для использования в цепях постоянного и переменного тока в системах автоматического регулирования приводов электродвигателей, цепях автоматического управления и регулирования. А также заменяют контактные электромагнитные реле и во многом их превосходят.
К преимуществам твердотельных реле относятся:
- длительный срок службы (более 1 млрд. срабатываний);
- высокое быстродействие;
- отсутствие электромагнитных помех в момент подключения;
- отсутствие дребезга контактов и акустического шума;
- отстутствие дугового разряда при размыкании (применение во взрывоопасной среде);
- высокое сопротивление изоляции между входом и выходом;
- малое энергопотребление;
- герметичность конструкции, стойкость к ударам и вибрации.
Основными областями применения твердотельных реле являются системы промышленного нагрева, температурного контроля, промышленного и общественного освещения, управления электродвигателями и трансформаторами, непрерывного электропитания.
Классификация
По типу нагрузки твердотельные реле делятся на однофазные и трехфазные. Широкий диапазон коммутируемого напряжения – 40…440 В позволяет использовать их для управления нагрузками в различных областях промышленности. По типу управления можно выделить 4 группы:
- управление напряжением постоянного тока (3…32 В);
- правление напряжением переменного тока (90…250 В);
- ручное управление выходным напряжением с помощью переменного резистора (470-560 кОм, 0,25-0,5 Вт);
- ручное управление выходным напряжением с помощью аналогового сигнала 4-20 мА.
Различные варианты управляющих сигналов позволяют применять твердотельные реле в качестве коммутационных элементов в разнотипных системах автоматического управления.
По способу коммутации реле могут быть:
Рекомендации по выбору
В связи с электрическими потерями на силовых полупроводниковых элементах твердотельные реле нагреваются при коммутации нагрузки. Это накладывает ограничение на величину коммутируемого тока. Температура 40 градусов Цельсия не вызывает ухудшения рабочих параметров устройства. Однако нагрев выше 60С сильно снижает допусимую величину коммутируемого тока. Реле в этом случае может перейти в неуправляемый режим работы и выйти из строя.
При работе с большинством типов нагрузок включение реле сопровождается скачком тока различной длительности и амплитуды, величину которого необходимо учитывать при выборе:
- чисто активные (нагреватели) нагрузки дают минимально возможные скачки тока, которые практически устраняются при использовании реле с переключением в «0»;
- лампы накаливания, галогенные лампы при включении пропускают ток в 7…12 раз больше номинального;
- флуоресцентные лампы в течение первых секунд (до 10 с) дают кратковременные скачки тока, в 5…10 раз превышающие номинальный ток;
- ртутные лампы дают тройную перегрузку по току в течение первых 3-5 мин.;
- обмотки электромагнитных реле переменного тока: ток в 3…10 раз больше номинального в течение 1-2 периодов;
- обмотки соленоидов: ток в 10…20 раз больше номинального в течение 0,05 – 0,1 с;
- электродвигатели: ток в 5…10 раз больше номинального в течение 0,2 – 0,5 с;
- высокоиндуктивные нагрузки с насыщающимися сердечниками (трансформаторы на холостом ходу) при включении в фазе нуля напряжения: ток в 20…40 раз больше номинального в течение 0,05 – 0,2 с;
- емкостные нагрузки при включении в фазе, близкой к 90°: ток в 20…40 раз больше номинального в течение времени от десятков микросекунд до десятков миллисекунд.
Способность выдерживать токовые перегрузки характеризуются величиной «ударного тока». Это – амплитуда одиночного импульса заданной длительности (обычно 10 мс). Для реле постоянного тока эта величина обычно в 2 – 3 раза превосходит значение максимально допустимого постоянного тока, для тиристорных реле это соотношение около 10. Для токовых перегрузок произвольной длительности можно исходить из эмпирической зависимости: увеличение длительности перегрузки на порядок ведет к уменьшению допустимой амплитуды тока. Расчет максимальной нагрузки представлен в таблице ниже.
Для повышения устойчивости устройства к импульсным помехам параллельно коммутирующим контактам ставится внешняя цепь, состоящая из последовательно включенных резистора и емкости (RC-цепь). Для более полной защиты от источника перегрузки по напряжению со стороны нагрузки необходимо включить защитные варисторы параллельно каждой фазе твердотельного реле.
При коммутации индуктивной нагрузки использование защитных варисторов обязательно. Выбор необходимого наминала варистора зависит от величины напряжения питающего нагрузку, и расчитывается по формуле: Uваристора = (1,6…1,9)хUнагрузки.
Тип варистора определяется на основе конкретных характеристик работы устройства. Наиболее популярными отечественными варисторами являются серии: СН2-1, СН2-2, ВР-1, ВР-2. Твердотельное реле обеспечивает хорошую гальваническую изоляцию входных и выходных цепей, а также токоведущих цепей от элементов конструкции прибора, поэтому дополнительных мер изоляции цепей не требуется.
Подключение
Принцип подключения прост. В приборе предусмотрены управляющие входы (на них подается напряжение с четким соблюдением полярности) и выход для подключения нагрузки. Важный момент — качество соединения. Здесь применяется винтовой способ (пайка исключена). Чтобы избежать повреждения ТТР, важно исключить попадание на контакты пыли, а также посторонних механических элементов. Стоит предусмотреть меры, препятствующие негативному воздействию на кожух прибора (во включенном или отключенном состоянии). После включения запрещено прикасаться к корпусу, который может быть горячим.
Обратите внимание, чтобы ТТР не располагалось вблизи легковозгораемых материалов. Кроме того, в процессе подключения убедитесь, что коммутация выполнена без ошибок. Если после включения изделие набирает температуру выше 60 градусов Цельсия, установите на него радиатор для охлаждения (причины и особенности этой защитной меры рассмотрены выше). Если ничего не предпринять, при достижении 80 градусов Цельсия прибор перестанет работать. Управление осуществляется при помощи цепочки с различными вариантами исполнения.
Заключение
Зная конструктивные особенности твердотельного реле, легче понять принцип его действия. В приборе взаимодействуют два сигнала — управляющий и управляемый, что обеспечивается благодаря гальванической развязке. В некоторых моделях ТТР эту функцию берет на себя оптрон. Напряжение, обеспечивающее управление устройством, подается и на светодиод. Свечение последнего поступает на фотодиод, что приводит к появлению тока, включению МОП или тиристора для управления подключенным аппаратом. Кроме того, в процессе создания схемы допускается применение специальных оптоэлектронных устройств — опто- и фототиристоров.
Источник: electroinfo.net